Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Intervalo de año de publicación
1.
Sci Total Environ ; 916: 170294, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38272080

RESUMEN

Calcium-silicon-magnesium-potassium fertilizer (CSMP) is usually used as an amendment to counteract soil acidification caused by historical excessive nitrogen (N) applications. However, the impact of CSMP addition on phosphorus (P) mobilization in acidic soils and the related mechanisms are not fully understood. Specifically, a knowledge gap exists with regards to changes in soil extracellular enzymes that contribute to P release. Such a knowledge gap was investigated by an incubation study with four treatments: i) initial soil (Control), ii) urea (60 mg kg-1) addition (U); iii) CSMP (1%) addition (CSMP) and iv) urea (60 mg kg-1) and CSMP (1%) additions (U + CSMP). Phosphorus mobilization induced by different processes was distinguished by biologically based P extraction. The Langmuir equation, K edge X-ray absorption near-edge structure spectroscopy, and ecoenzyme vector analysis according to the extracellular enzyme activity stoichiometry were deployed to investigate soil P sorption intensity, precipitation species, and microbial-driven turnover of organophosphorus. Results showed that CaCl2 extractable P (or citric acid extractable P) content increased by 63.4% (or 39.2%) in the soil with CSMP addition, compared with the study control. The accelerated mobilization of aluminum (Al)/iron (Fe)-bound P after CSMP addition, indicated by the reduction of the sum of FePO4·2H2O and AlPO4 proportion, contributed to this increase. The decrease of P sorption capacity can also be responsible for it. The CSMP addition increased enzyme extractable P in the soil nearly 7-fold and mitigated the limitations of carbon (C) and P for soil microorganisms (indicated by the enzyme stoichiometry and ecoenzyme vector analysis), suggesting that microbial turnover processes also contribute to P mobilization in amended acidic soil. These findings indicate that the P mobilization in CSMP amended acidic soil not only attributed to both decreasing P sorption capacity and dissolving phosphate precipitation, but also to the increase of the microbial turnover of the organophosphorus pool.


Asunto(s)
Calcio , Fósforo , Fósforo/análisis , Calcio/análisis , Suelo/química , Magnesio/análisis , Silicio , Fertilizantes/análisis , Potasio/análisis , Fosfatos/análisis , Urea
2.
J Ethnopharmacol ; 323: 117683, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184026

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The Yi people in the Xiaoliangshan region in southwest China have a unique practice of combining ritual treatment and traditional medicine to care for patients. Despite increasing urbanization in the area, they have managed to preserve their distinctive lifestyle and extensive knowledge of traditional medicinal plants, setting them apart from other regions. However, there is a lack of systematic documentation on the knowledge of traditional medicinal plants used by the Yi people in Xiaoliangshan. AIM OF THE STUDY: This research aims to achieve the following objectives: 1. Document the diversity of medicinal plants used by the Yi people and explore their therapeutic usages. 2. Evaluate and analyze the main types of diseases with a high incidence in the local area and identify the types of medicinal plants used to treat these diseases. 3. Explore the underlying geographical and human factors influencing both disease prevalence and medicinal plant usage. METHODS: Ethnobotanical research methods were used to record and analyze the medicinal plants used by the Yi in Xiaoliangshan. Experts identified all plant specimens collected during ethnobotanical field surveys. The types of diseases treated by medicinal plants were classified according to the International Classification of Primary Care -2nd. RESULTS: A total of 125 medicinal plants were recorded after interviewing 193 participants. Of the medicinal plants identified, those with over 100 use reports were Paris polyphylla (202 use reports), Taxillus sutchuenensis (183), Artemisia indica (149), and Papaver somniferum (113). A total of 14 disease categories were recorded, with those related to the following categories having higher Informant Consensus factor values (ICF ≥0.85): Pregnancy, Childbearing, Family Planning, General and Unspecified, Urological, Respiratory, Musculoskeletal, and Skin. The highest quantity of medicinal plants is utilized to improve specific diseases and health problems, namely those related to Digestion, Skin, and Musculoskeletal. Fewer plant species were utilized for diseases or health issues associated with Eyes, Psychological, or Pregnancy, Childbearing, and Family Planning. The use reports from the informants also revealed how some medicinal plants are used to treat a variety of diseases or health issues. For instance, Malva pusilla is used for inducing abortion, treating postpartum hemorrhage, and joint sprains; Artemisia indica is used for treating malaria; Argentina lineata is used to remedy tuberculosis and malaria. Taxillus sutchuenensis is used for dealing with cold, pneumonia, and other ailments. CONCLUSIONS: The Yi people in Xiaoliangshan have a rich knowledge of traditional medicinal plants. Decoction and wine brewing are the most common processing methods used for these plants, which are utilized to treat a wide range of diseases. The characteristics of the medicinal use of the Yi people reflects the alpine mountainous environment in which they live, and their medical practices are closely related to traditional healing culture. This study enhances our understanding of the Yi traditional medicine via documentation and offers a valuable reference for future research and the development of new drugs.


Asunto(s)
Malaria , Plantas Medicinales , Pueblos del Sudeste Asiático , Humanos , China , Etnobotánica , Conocimientos, Actitudes y Práctica en Salud , Fitoterapia
3.
Int J Biol Macromol ; 259(Pt 1): 129101, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38163503

RESUMEN

In this study, an amorphous silica reinforced, phosphoric-crosslinked chitosan foam (P-CTS@SixOy) was prepared. The introduction of amorphous silica not only increased the affinity of the adsorbent for uranium, but also improved the stability of the material. The number of active sites of P-CTS@SixOy was increased by the introduction of phosphate groups. The material exhibited excellent uranium adsorption performance with the removal capacity and efficiency of 850.5 mg g-1 and 98.1 %, respectively. After regenerations, the morphology of P-CTS@SixOy still maintained, and the uranium adsorption efficiency remained above 90 %, manifesting the excellent cycle performance of P-CTS@SixOy. In the dynamic adsorption experiment, P-CTS@SixOy successfully concentrated the volume of uranium-containing solution, and exhibited excellent uranium adsorption performance. The analysis of kinetics, isotherms, and thermodynamics manifested that the uranium adsorption behavior of P-CTS@SixOy was a spontaneous, endothermic, monolayer chemical adsorption process. X-ray photoelectron spectroscopy, Scanning Electron Microscope, and Fourier Transform Infrared Spectrometer were used to characterized the P-CTS@SixOy before and after adsorption, which demonstrated that the main interaction mechanism between uranium and P-CTS@SixOy was the complexation. These studies indicated the huge application prospect of P-CTS@SixOy in the treatment of large-scale uranium-containing wastewater.


Asunto(s)
Quitosano , Uranio , Uranio/química , Quitosano/química , Adsorción , Dióxido de Silicio/química , Aguas Residuales , Cinética , Espectroscopía Infrarroja por Transformada de Fourier , Concentración de Iones de Hidrógeno
4.
Fitoterapia ; 172: 105756, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38007052

RESUMEN

Ancient Chinese medicine literature and modern pharmacological studies show that Sophora tonkinensis Gagnep. (ST) has a protective effect on the heart. A biolabel research based on omics and bioinformatics and experimental validation were used to explore the application value of ST in the treatment of heart diseases. Therapeutic potential, mechanism of action, and material basis of ST in treating heart diseases were analyzed by proteomics, metabolomics, bioinformatics, and molecular docking. Cardioprotective effects and mechanisms of ST and active compounds were verified by echocardiography, HE and Masson staining, biochemical analysis, and ELISA in the isoproterenol hydrochloride-induced myocardial ischemia (MI) mice model. The biolabel research suggested that the therapeutic potential of ST for MI may be particularly significant among the heart diseases it may treat. In the isoprenaline hydrochloride-induced MI mice model, ST and its five active compounds (caffeic acid, gallic acid, betulinic acid, esculetin, and cinnamic acid) showed significant protective effects against echocardiographic changes and histopathological damages of the ischemic myocardial tissue. Meanwhile, they showed a tendency to correct mitochondrial structure and function damage and the abnormal expression of 12 biolables (DCTN1, DCTN3, and SCARB2, etc.) in the vesicle-mediated transport pathway, inflammatory cytokines (IL-1ß, IL-6, and IL-10, etc.), and low density lipoprotein receptor (LDLR). The biolabel research identifies a new application value of ST in the treatment of heart diseases. ST and its active compounds inhibit mitochondrial impairments, inflammation, and LDLR deficiency through regulating the vesicle-mediated transport pathway, thus achieving the purpose of treating MI.


Asunto(s)
Isquemia Miocárdica , Sophora , Ratones , Animales , Sophora/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Isquemia Miocárdica/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Isoproterenol/uso terapéutico , Receptores de LDL
5.
Health Commun ; 39(2): 323-338, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36693813

RESUMEN

Touch is a fundamental resource mobilized by clinicians in physical examinations in outpatient clinical consultations. However, few studies have been conducted to explore the sequential organization of touch in the interactional process of physical examinations where clinicians' touch is launched and responded to in Chinese medical settings. Based on a collection of video recordings of naturally occurring clinician-patient interaction in an orthopedic outpatient clinic in China, we observed four types of clinicians' touch in the physical examination framework: the guiding touch, the diagnostic touch, the demonstrative touch, and the therapeutic touch. Together with clinical expertise, the sensorial knowledge obtained through touch enables clinicians to professionally evaluate patients' physical conditions and diagnose their illnesses. We also demonstrated that patients do not merely put themselves into clinicians' hands as clinical objects for inspection and defer to clinicians' medical authority. Instead, they actively and agentively participate in physical examinations to jointly accomplish social actions and activities through the temporal and sequential mobilization of their multimodal resources. This study not only adds to an emerging body of research on touch in medical settings but also sheds some light on the understanding of the clinician-patient interaction in Chinese outpatient clinics.


Asunto(s)
Pacientes Ambulatorios , Tacto Terapéutico , Humanos , Tacto , Examen Físico , Derivación y Consulta
6.
Environ Pollut ; 343: 123204, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38142807

RESUMEN

Colloid-facilitated phosphorus (P) migration plays an important role in P loss from farmland to adjacent water bodies. However, the dynamics of colloidal P (Pcoll) release as influenced by irrigation in alkaline calcareous soil remains a knowledge gap. The present study, monitored the dynamic change of Pcoll under different water management strategies: 1) control, 2) flooding, and 3) alternating flooding and drying cycles. Soil water-dispersible colloids (0.6 nm-1 µm) were extracted by combining filtration and ultrafiltration methods. The contents of P, cation and organic carbon in the water-dispersible colloids were determined and the stability and mineral composition of colloidal fractions were characterized. The results showed that Pcoll ranged from 16.5 to 25.5 mg kg-1 and represented 42.8%-64.9% of the water-extracted P in the control. Flooding significantly decreased the Pcoll content by 16.0%-62.1% (mean 32.7%) and it may be attributed to the dissolution of colloidal iron (Fe) bound P. The alternating flooding and drying treatment significantly reduced the Pcoll content by 11.6%-88.0% (mean 67.6%). The Pcoll content of the flooding event was always greater than the Pcoll content of the drying event during flooding and drying cycles. Redundancy analysis and random forest modeling showed that the colloidal calcium (Ca) and ionic strength in soil solutions had negative correlations with the Pcoll content, and pH, ionic strength and truly dissolved P were the critical factors affecting Pcoll. Drying of the flooded soil led to the decrease of pH and the increase of ionic strength, colloidal Ca content and positive charges of colloid surfaces, which promoted colloid aggregation and enhanced soil P sorption capacity. This restricted the loss potential of Pcoll. In summary, controlled flooding and drainage when managed correctly have a role to play in mitigating Pcoll loss from P-enriched calcareous soils.


Asunto(s)
Fósforo , Suelo , Fósforo/análisis , Suelo/química , Agua/química , Inundaciones , Coloides/química
7.
ACS Nano ; 18(1): 919-930, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38142426

RESUMEN

Long-term immobilization of joints can lead to disuse atrophy of the muscles in the joints. Oral nutrients are used clinically for rehabilitation and therapeutic purposes, but bioavailability and targeting are limited. Here, we report tea polyphenols (dietary polyphenols), sustained-release nanofilms that release tea polyphenols through slow local degradation of core-shell nanofibers in muscles. This dietary polyphenol does not require gastrointestinal consumption and multiple doses and can directly remove inflammatory factors and superoxide generated in muscle tissue during joint fixation. The quality of muscles is increased by 30%, and muscle movement function is effectively improved. Although nanofibers need to be implanted into muscles, they can improve bacterial infections after joint surgery. To investigate the biological mechanism of this core-shell nanomembrane prevention, we conducted further transcriptomic studies on muscle, confirming that in addition to achieving antioxidation and anti-inflammation by inhibiting TNF-α and NF-κB signaling pathways, tea polyphenol core-shell nanofibers can also promote muscle formation by activating the p-Akt signaling pathway.


Asunto(s)
Nanofibras , Humanos , Preparaciones de Acción Retardada , , Polifenoles/farmacología , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/prevención & control
8.
Animals (Basel) ; 13(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38067048

RESUMEN

Since essential oils-such as cinnamaldehyde, thymol, carvacrol, and eugenol-have antibacterial, antioxidant, and anti-inflammatory properties, this study aimed to examine the supplementation of different essential oil mixtures together with 1600 mg/kg zinc oxide (ZnO) on growth performance, incidence of diarrhea, serum immune indices, fecal volatile fatty acids, and microflora structure in weaned piglets. A total of 240 weaned piglets (Duroc × Landrace × Yorkshire) with an average body weight of 8.85 ± 0.21 kg were randomly allocated to 30 pens (6 pens per diet, 4 males and 4 females per pen). Five different experimental diets were prepared and administered for 28 days: (i) a control diet (C), a corn-soybean basal diet without antibiotics, ZnO, or a supplementation of growth promoters; (ii) a control diet with 400 mg/kg essential oil mixtures 1 (EOM1); (iii) a control diet supplemented with ZnO at 1600 mg/kg (Z); (iv) a diet incorporating the Z diet with the addition of essential oil mixtures 1 at 400 mg/kg (ZOM1); and (v) a diet incorporating the Z diet with the addition of essential oil mixtures 2 at 400 mg/kg (ZOM2). During day (d) 14-28 and d 1-28 of the experiment, the average daily gain (ADG) in piglets in the ZOM1 and ZOM2 groups were higher (p < 0.05) compared to the C group. The diarrhea incidence of the Z, ZOM1, and ZOM2 groups were significantly decreased (p < 0.05), and the piglets of the ZOM1 group exhibited the lowest diarrhea incidence throughout the trial period. Additionally, the apparent total tract digestibility (ATTD) of neutral detergent fiber (NDF), acid detergent fiber (ADF), ash, organic matter (OM), and ether extract (EE) were higher than those fed the Z diet, and higher levels of NDF, ADF, and crude protein (CP) were observed in groups other than those fed the ZOM1 diet (p < 0.01). On d 14, the pigs fed EOM1 and ZOM2 diets showed a somewhat lower (p < 0.1) immunoglobulin G (lgG) level in serum than those fed the C diet. Additionally, the IL-8 level in serum in the ZOM1 group tended to be higher than that in the other groups (p < 0.1). The piglets fed the ZOM1 diet showed a tendency of lower (p = 0.05) acetate concentration in feces on d 14. Principal co-ordinates analysis (PCoA) showed significant differences (p < 0.05) in the composition of fecal microbial communities among the groups. Dietary EOM1 significantly increased the number of fecal bacteroides (p < 0.05) and tended to increase the number of Prevotella (p < 0.1). Therefore, EOM1 combined with 1600 mg/kg ZnO tends to reduce diarrhea incidence, tends to improve the fecal microbial community structure and growth performance of weaned piglets, and has the potential to replace pharmacological dosages of ZnO.

9.
Front Plant Sci ; 14: 1258316, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37780502

RESUMEN

Panax notoginseng (P. notoginseng) is an invaluable perennial medicinal herb. However, the roots of P. notoginseng are frequently subjected to severe damage caused by root-knot nematode (RKN) infestation. Although we have observed that P. notoginseng possessed adult-plant resistance (APR) against RKN disease, the defense response mechanisms against RKN disease in different age groups of P. notoginseng remain unexplored. We aimed to elucidate the response mechanisms of P. notoginseng at different stages of development to RKN infection by employing transcriptome, metabolome, and histochemistry analyses. Our findings indicated that distinct age groups of P. notoginseng may activate the phenylpropanoid and flavonoid biosynthesis pathways in varying ways, leading to the synthesis of phenolics, flavonoids, lignin, and anthocyanin pigments as both the response and defense mechanism against RKN attacks. Specifically, one-year-old P. notoginseng exhibited resistance to RKN through the upregulation of 5-O-p-coumaroylquinic acid and key genes involved in monolignol biosynthesis, such as PAL, CCR, CYP73A, CYP98A, POD, and CAD. Moreover, two-year-old P. notoginseng enhanced the resistance by depleting chlorogenic acid and downregulating most genes associated with monolignol biosynthesis, while concurrently increasing cyanidin and ANR in flavonoid biosynthesis. Three-year-old P. notoginseng reinforced its resistance by significantly increasing five phenolic acids related to monolignol biosynthesis, namely p-coumaric acid, chlorogenic acid, 1-O-sinapoyl-D-glucose, coniferyl alcohol, and ferulic acid. Notably, P. notoginseng can establish a lignin barrier that restricted RKN to the infection site. In summary, P. notoginseng exhibited a potential ability to impede the further propagation of RKN through the accumulation or depletion of the compounds relevant to resistance within the phenylpropanoid and flavonoid pathways, as well as the induction of lignification in tissue cells.

10.
Int J Biol Macromol ; 253(Pt 4): 126799, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37703965

RESUMEN

Natural plant polysaccharides are macromolecular substances with a wide range of biological activities. They have a wide range of biological activities, especially play an important role in the treatment of inflammatory bowel disease. The molecular weight of polysaccharides, the composition of monosaccharides and the connection of glycosidic bonds will affect the therapeutic effect on inflammatory bowel disease. Traditional Chinese medicine plant polysaccharides and various types of plant polysaccharides reduce the levels of inflammatory cytokines IL-1ß, IL-6, IL-8 and IL-17, increase the level of anti-inflammatory factor IL-10, regulate NF-κB signaling pathway, and NLRP3 inflammasome to relieve colitis. At the same time, they can play a protective role by regulating the balance of intestinal flora in mice with colitis and increasing the abundance of probiotics to promote the metabolism of polysaccharide metabolites SCFAs. This review summarizes the research on the treatment of inflammatory bowel disease by many natural plant polysaccharides, and provides a theoretical basis for the later treatment of polysaccharides on inflammatory bowel disease.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Ratones , Animales , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Colitis/tratamiento farmacológico , Colitis/metabolismo , Transducción de Señal , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Polisacáridos/química , Sulfato de Dextran , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
11.
Molecules ; 28(17)2023 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-37687101

RESUMEN

Chinese dwarf cherry (Cerasus humilis) is a wild fruit tree and medicinal plant endemic to China. Its fruits are rich in various bioactive compounds, such as flavonoids and carotenoids, which contribute greatly to their high antioxidant capacity. In this study, the contents of bioactive substances (chlorophyll, carotenoids, ascorbic acid, anthocyanin, total flavonoids, and total phenols), antioxidant capacities, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonicacid) (ABTS+) scavenging ability, and ferric-reducing antioxidant power (FRAP)) in differentially pigmented C. humilis fruits of four varieties were determined and compared. The results revealed that anthocyanin, total flavonoids and total phenols were the three main components responsible for the antioxidant activity of C. humilis fruits. 'Jinou No.1' fruits with dark red peel and red flesh had the highest contents of anthocyanin, total flavonoids, and total phenols, as well as the highest antioxidant capacities; 'Nongda No.5' fruits with yellow-green peel and yellow flesh had the highest contents of carotenoids and chlorophyll, while 'Nongda No.6' fruit had the highest ascorbic acid content. To further reveal the molecular mechanism underlying differences in the accumulation of carotenoids and flavonoids among differentially pigmented C. humilis fruits, the expression patterns of structural genes involved in the biosynthesis of the two compounds were investigated. Correlation analysis results revealed that the content of carotenoids in C. humilis fruits was very significantly positively correlated with the expression of the ChCHYB, ChZEP, ChVDE, ChNSY, ChCCD1, ChCCD4, ChNCED1, and ChNCED5 genes (p < 0.01) and significantly negatively correlated with the expression of ChZDS (p < 0.05). The anthocyanin content was very significantly positively correlated with ChCHS, ChFLS, and ChUFGT expression (p < 0.01). The total flavonoid content was very significantly positively correlated with the expression of ChCHS, ChUFGT, and ChC4H (p < 0.01) and significantly positively correlated with ChFLS expression (p < 0.05). This study can provide a basis for understanding the differences in the accumulation of bioactive substances, and is helpful for clarifying the mechanisms underlying the accumulation of various carotenoids and flavonoids among differentially pigmented C. humilis fruits.


Asunto(s)
Antioxidantes , Prunus , Antioxidantes/farmacología , Frutas , Antocianinas , Carotenoides , Ácido Ascórbico , Flavonoides , Clorofila , Fenoles
12.
Front Immunol ; 14: 1238694, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37649480

RESUMEN

Introduction: Tumor-infiltrating T lymphocytes in the tumor microenvironment are critical factors influencing the prognosis and chemotherapy outcomes. As a Chinese herbal medicine, Marsdenia tenacissima extract (MTE) has been widely used to treat cancer in China. Its immunoregulatory effects on tumor-associated macrophages is well known, but whether it regulates tumor-infiltrating T-cell functions remains unclear. Method: We collected 17 tumor samples from MTE-administered colorectal cancer patients, 13 of which showed upregulation of CD3+/CD8+ tumor-infiltrating T cells. Further in vitro and in vivo experiments were performed to investigate the regulatory effects of MTE on tumor-infiltrating T cells and immune escape of tumors. Results: Under single and co-culture conditions, MTE inhibited TGF-ß1 and PD-L1 expression in the colorectal cancer (CRC) cell lines HCT116 and LoVo. In Jurkat cells, MTE inhibited FOXP3 and IL-10 expression, increased IL-2 expression, but had no effect on PD-1 expression. These findings were confirmed in vitro using subcutaneous and colitis-associated CRC mouse models. MTE also increased the density of CD3+/CD8+ tumor-infiltrating T cells and exhibited considerable tumor-suppressive effects in these two tumor mouse models. Conclusions: Our findings suggested that MTE inhibits the immune escape of cancer cells, a precipitating factor increasing the immune response of T lymphocytes.


Asunto(s)
Neoplasias Asociadas a Colitis , Marsdenia , Animales , Ratones , Linfocitos T CD8-positivos , Línea Celular , Inmunidad , Microambiente Tumoral
13.
Sci Bull (Beijing) ; 68(14): 1514-1521, 2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37438155

RESUMEN

Two-dimensional (2D) transition metal dichalcogenides (TMDs) are regarded as pivotal semiconductor candidates for next-generation devices due to their atomic-scale thickness, high carrier mobility and ultrafast charge transfer. In analog to the traditional semiconductor industry, batch production of wafer-scale TMDs is the prerequisite to proceeding with their integrated circuits evolution. However, the production capacity of TMD wafers is typically constrained to a single and small piece per batch (mainly ranging from 2 to 4 inches), due to the stringent conditions required for effective mass transport of multiple precursors during growth. Here we developed a modularized growth strategy for batch production of wafer-scale TMDs, enabling the fabrication of 2-inch wafers (15 pieces per batch) up to a record-large size 12-inch wafers (3 pieces per batch). Each module, comprising a self-sufficient local precursor supply unit for robust individual TMD wafer growth, is vertically stacked with others to form an integrated array and thus a batch growth. Comprehensive characterization techniques, including optical spectroscopy, electron microscopy, and transport measurements unambiguously illustrate the high-crystallinity and the large-area uniformity of as-prepared monolayer films. Furthermore, these modularized units demonstrate versatility by enabling the conversion of as-produced wafer-scale MoS2 into various structures, such as Janus structures of MoSSe, alloy compounds of MoS2(1-x)Se2x, and in-plane heterostructures of MoS2-MoSe2. This methodology showcases high-quality and high-yield wafer output and potentially enables the seamless transition from lab-scale to industrial-scale 2D semiconductor complementary to silicon technology.

14.
Int J Biol Macromol ; 248: 125949, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37494997

RESUMEN

Polysaccharides, being a natural, active, and biodegradable polymer, have garnered significant attention due to their exceptional properties. These properties make them ideal for creating multifunctional hydrogels that can be used as wound dressings for skin injuries. Polysaccharide hydrogel has the ability to both simulate the natural extracellular matrix, promote cell proliferation, and provide a suitable environment for wound healing while protecting it from bacterial invasion. Polysaccharide hydrogels offer a promising solution for repairing damaged skin. This review provides an overview of the mechanisms involved in skin damage repair and emphasizes the potential of polysaccharide hydrogels in this regard. For different skin injuries, polysaccharide hydrogels can play a role in promoting wound healing. However, we still need to conduct more research on polysaccharide hydrogels to provide more possibilities for skin damage repair.


Asunto(s)
Hidrogeles , Piel , Hidrogeles/farmacología , Trasplante de Piel , Vendajes , Polisacáridos/farmacología , Antibacterianos
15.
Environ Pollut ; 334: 122168, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37437761

RESUMEN

With deepening application of nuclear power technology, the problem of water ecological environment pollution caused by uranium (U(VI)) is becoming increasingly serious. Photoreduction separation of U(VI) on photocatalysts is considered as an effective strategy to solve uranium pollution. In this work, a novel ternary dual Z-scheme AgVO3-InVO4/g-C3N4 heterojunction (Z-AIGH) nanocomposite with high surface area (73.45 m2 g-1, Z-AIGH2) was designed. The batch adsorption experiment in dark environment showed that Z-AIGH2 nanocomposite had an excellent U(VI) adsorption performance. As for photocatalytic experiments, Z-AIGH2 exhibited a rapid photocatalytic response for separating U(VI) without any organic sacrifice agents. The U(VI) separation rate on Z-AIGH2 nanocomposite was over 98.7% after only 20.0 min visible light irradiation (T = 298 K, CU(Ⅵ) = 10.0 mg L-1, m/V = 0.1 g L-1 and pH = 7.0). Z-AIGH2 nanocomposite also showed good selectivity and cycle stability. The U(VI) removal rate of Z-AIGH2 nanocomposite after fifth cycles was about 96.1% (T = 298 K, CU(Ⅵ) = 10.0 mg L-1, m/V = 0.1 g L-1 and pH = 7.0). High photocatalytic activity of Z-AIGH2 for U(VI) was attributed to the construction of ternary dual Z-scheme heterojunction structure and ant nest-like hole structure. Based on above results, Z-AIGH2 nanocomposite had great potential for water environment renovation.


Asunto(s)
Nanocompuestos , Uranio , Luz , Contaminación del Agua , Agua
16.
Molecules ; 28(12)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37375405

RESUMEN

The excessive intake of fluoride, one of the trace elements required to maintain health, leads to liver injury. Tetramethylpyrazine (TMP) is a kind of traditional Chinese medicine monomer with a good antioxidant and hepatoprotective function. The aim of this study was to investigate the effect of TMP on liver injury induced by acute fluorosis. A total of 60 1-month-old male ICR mice were selected. All mice were randomly divided into five groups: a control (K) group, a model (F) group, a low-dose (LT) group, a medium-dose (MT) group, and a high-dose (HT) group. The control and model groups were given distilled water, while 40 mg/kg (LT), 80 mg/kg (MT), or 160 mg/kg (HT) of TMP was fed by gavage for two weeks, with a maximum gavage volume for the mice of 0.2 mL/10 g/d. Except for the control group, all groups were given fluoride (35 mg/kg) by an intraperitoneal injection on the last day of the experiment. The results of this study showed that, compared with the model group, TMP alleviated the pathological changes in the liver induced by the fluoride and improved the ultrastructure of liver cells; TMP significantly decreased the levels of ALT, AST, and MDA (p < 0.05) and increased the levels of T-AOC, T-SOD, and GSH (p < 0.05). The results of mRNA detection showed that TMP significantly increased the mRNA expression levels of Nrf2, HO-1, CAT, GSH-Px, and SOD in the liver compared with the model group (p < 0.05). In conclusion, TMP can inhibit oxidative stress by activating the Nrf2 pathway and alleviate the liver injury induced by fluoride.


Asunto(s)
Fluoruros , Hepatopatías , Masculino , Ratones , Animales , Fluoruros/efectos adversos , Ratones Endogámicos ICR , Factor 2 Relacionado con NF-E2/metabolismo , Hepatopatías/metabolismo , Hígado , Estrés Oxidativo , ARN Mensajero/metabolismo , Superóxido Dismutasa/metabolismo
17.
Phytopathology ; 113(10): 1853-1866, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37311718

RESUMEN

Plant secondary metabolites are well known for their biological functions in defending against pathogenic microorganisms. Tea saponin (TS), one type of secondary metabolite of the tea plant (Camellia sinensis), has been shown to be a valuable botanical pesticide. However, its antifungal activity in controlling the fungi Valsa mali, Botryosphaeria dothidea, and Alternaria alternata, which induce major diseases in apple (Malus domestica), has not been determined. In this study, we first determined that TS has higher inhibitory activity than catechins against the three types of fungi. We further utilized in vitro and in vivo assays to confirm that TS showed high antifungal activity against the three types of fungi, especially for V. mali and B. dothidea. In the in vivo assay, application of a 0.5% TS solution was able to restrain the fungus-induced necrotic area in detached apple leaves efficiently. Moreover, a greenhouse infection assay also confirmed that TS treatment significantly inhibited V. mali infection in leaves of apple seedlings. In addition, TS treatment activated plant immune responses by decreasing accumulation of reactive oxygen species and promoting the activity of pathogenesis-related proteins, including chitinase and ß-1,3-glucanase. This indicated that TS might serve as a plant defense inducer to activate innate immunity to fight against fungal pathogen invasion. Therefore, our data indicated that TS might restrain fungal infection in two ways, by directly inhibiting the growth of fungi and by activating plant innate defense responses as a plant defense inducer.


Asunto(s)
Malus , Malus/microbiología , Antifúngicos/farmacología , Antifúngicos/metabolismo , Proteínas de Plantas/metabolismo , Enfermedades de las Plantas/microbiología , Té/metabolismo
18.
Anim Biotechnol ; 34(9): 4978-4988, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37300519

RESUMEN

This experiment was conducted to evaluate the growth performance, growth regulating factors, and liver morphology of chicks hatched from egg-laying breeding hens dietary supplemented with additives (ß-carotene). Hy-line breeding hens were allocated into three groups with three replicates/group. The dietary treatments were as follows: basal diet as a control (Con), basal diet supplemented with 120 (ßc-L) or 240 (ßc-H) mg/kg of ß-carotene diet. After 6 weeks, the eggs were collected and incubated. The hatched chicks were fed the same diet. The results showed that chicks in the ßc-L group increased in body weight at 21 days (p < 0.01). At 42 days, chicks in the ßc-H group showed a significant increase in tibia length (p < 0.05). The liver index increased in the ßc-L and ßc-H groups at 7 days (p < 0.05). Serum HGF (7, 14, 21, and 42 days) and leptin (14 days) were significantly increased in the group supplemented with ßc. Hepatic GHR (14 days), IGF-1R (14 days), and LEPR (21 days) mRNA expression were significantly increased. In addition, there was an increase in PCNA-positive cells in the liver of chicks in the ßc group. In conclusion, the addition of ß-carotene to the diet of laying breeder hens was more advantageous in terms of growth performance and liver development of the offspring.


Asunto(s)
Pollos , beta Caroteno , Animales , Femenino , Pollos/genética , beta Caroteno/farmacología , beta Caroteno/metabolismo , Dieta/veterinaria , Suplementos Dietéticos , Alimentación Animal/análisis , Hígado
19.
Molecules ; 28(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37175143

RESUMEN

The panax genus is a widely used medicinal plant with good biological activity. As one of the main active components of the Panax genus, polysaccharides have various pharmacological effects. This review summarizes the latest research reports on ginseng, American ginseng, and Panax notoginseng polysaccharides and compares the differences in extraction, isolation and purification, structural characteristics, and biological activities. The current research mainly focuses on ginseng polysaccharides, and the process of extraction, isolation, and structure analysis of each polysaccharide is roughly the same. Modern pharmacological studies have shown that these polysaccharides have antioxidants, antitumor, immunomodulatory, antidiabetic, intestinal protection, skin repair, and other biological activities. This review provides new insights into the differences between the three kinds of ginseng polysaccharides which will help to further study the medicinal value of ginseng in traditional Chinese medicine.


Asunto(s)
Panax notoginseng , Panax , Plantas Medicinales , Panax/química , Polisacáridos/farmacología , Polisacáridos/química , Antioxidantes/farmacología , Antioxidantes/química , Extractos Vegetales/farmacología , Extractos Vegetales/química
20.
Environ Sci Pollut Res Int ; 30(27): 70131-70142, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37145355

RESUMEN

Oil sludge is the primary pollutant produced by the petroleum industry, which is characterized by large quantities, difficult disposal, and high toxicity. Improper treatment of oil sludge will pose a severe threat to the human living environment. Self-sustaining treatment for active remediation (STAR) technology has a specific potential for treating oil sludge, with low energy consumption, short remediation time, and high removal efficiency. Given the low smoldering porosity, poor air permeability, and poor repair effect of oil sludge, this paper considered coarse river sand as the porous medium, built a smoldering reaction device, conducted a comparative study on smoldering experiments of oil sludge with and without river sand, and studied the key factors affecting smoldering of oil sludge. The study shows that the repair effect is greatly improved by adding river sand, increasing the pore, and improving air permeability, and the total petroleum hydrocarbon removal rate reaches more than 98%, which meets the requirements of oil sludge treatment. When the mass ratio of oil sludge to river sand (sludge-sand ratio) is 2:1, the flow velocity is 5.39 cm/s, and the particle size of the medium is 2-4 mm. In addition, the best conditions for smoldering occur. The average peak temperature, average propagation speed, and average removal efficiency are relatively high. The peak temperature occurs in a short time; the heating time is also short, and the heat loss is low. Moreover, the generation of toxic and harmful gases is reduced, and secondary pollution is hindered. The experiment indicates that the porous media play a crucial role in the smoldering combustion of oil sludge.


Asunto(s)
Petróleo , Aguas del Alcantarillado , Humanos , Porosidad , Arena , Estudios de Factibilidad , Aceites
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA